From C to Java, Scientific Data Analysis with
Java, Jacl and Swank

Bruce A. Johnson

One Moon Scientific, Inc.

bruce@onemoonscientific.com

www.onemoonscientific.com

I. Introduction

Nuclear Magnetic Resonance (NMR)
spectroscopy is an analytical technique that
can be used to derive information about the
structures and motions of molecules. This
information can be used to determine the
chemical nature of unknown molecules, de-
termine the three dimensional structures of
large biological molecules such as proteins
and DNA, and visualize the internal structure
of living organisms (MRI imaging). The
author developed the program, NMRView, to
facilitate the visualization and analysis of
bio-molecular NMR data [1,2]. Over one
hundred scientific papers are published
each year that cite the use of NMRView

The NMR phenomenon derives from
the fact that some nuclei have a quantum
mechanical property of “spin angular mo-
mentum”. In a magnetic field the different
possible spin states have different energy
levels and the populations of nuclei in the
different states can be perturbed by the ad-
dition of energy at the frequency of radio
waves. Hydrogen atoms, for example,
resonate at about 600 MHz in a typical NMR
magnet.

The exact frequency at which the nu-
cleus of a given atom resonates, and the
time it takes for the population of excited
atoms to relax back to their equilibrium
state, is dependent on the chemical envi-
ronment in which the atom exists. It is the
measurement of these differences in fre-
quency and relaxation time that give rise to

the myriad applications of NMR spectros-
copy.

A common biological application of
NMR involves the determination of the 3D
structure of a protein [3] (Fig. 1). In this ap-
plication the protein is expressed in a micro-
organism whose sole nutritional source of
carbon is from molecules (typically glucose)
in which the carbon atoms are all atoms of
the NMR active isotope c. Similarly the
nitrogen source (typically ammonia) consists
of molecules in which the nitrogen atoms are
of the "N isotope.

Fig. 1. Protein structure deter-
mined by NMR spectrosc

Signals from the 'H, ®C and N at-
oms in the protein are analyzed to determine
a set of constraints on the distances be-
tween the atoms. Various computational

B

signals.

4.50 14.00 1350 13.00 12150 12100 11'50 11.00
H1_(ppm)
“ N e
nmr/test/proton.fid
4.20 3.70 3.20 2.70 2.20 1.70
H1_(ppm)

Fig 2. NMRView spectrum widget showing time domain and frequency domain

techniques are then used to generate 3D
models consistent with those constraints.
The data involved in this process may be
derived from 10 or more different types of
NMR experiments collected over a period of
weeks. The individual data sets may range
in size from megabytes to gigabytes in size.

Deriving useful information from the
large amounts of NMR data involves proc-
esses of both computational analysis and
human visualization. NMRView was written
to facilitate this analysis. It allows the user
to both visually correlate information in dif-

ferent datasets as well as apply computa-
tional techniques to extract and correlate
information about the frequencies and inten-
sities of the NMR data derived from specific
atoms in the molecular structure.

NMRView incorporates Tcl (Tool
Command Language) and the entire GUI is
implemented with the Tk GUI toolkit. A
custom Tk widget was implemented to pro-
duce interactive one-dimensional (Fig. 2)
and two-dimensional (Fig. 3) data plots that
represent any orthogonal slice through the
multidimensional NMR datasets.

103.0+ -
i o
108.0 - o
o o
© 5,0
-] 3 -
113.04 5 %
o o ¢ o s & t
o o
o o
[
_118.04 o
Z o
— o . 2
o o
o o ﬂo
123.0- oS
H L o
n -
oo "o o @
_ o
128.0 s o o
e
133.0+
T T T n T T
10.0 9.0 8.0 7.0 6.0
1H
Fig. 3. NMR Spectrum widget showing two-dimensional contour plot of spectrum.

A variety of analysis routines are
written in C, and exposed to the user as Tcl
commands (Table 1.) These commands
give low level access to the NMR data and

Table 1. Some of the NMRView com-

mands.

Command Function

Name

spectrum . .
Create a widget for rendering
vector and contour plots of
spectra.

nv_dataset Open, read, write and ana-
lyze NMR data files.

nv_peak Identify and analyze peaks
(local maxima) in spectra.

vecmat Create and carry out mathe-
matical operations on vectors
and matrices.

implement a variety of algorithms such as
clustering and pattern recognition.

A large number of Tcl scripts, both
written by the author and contributed by the
user community, are used in the operation of
NMRView.

Tcl scripting in NMRView is one of the
key features that led to its great popularity in
the bio-molecular NMR community.
Scripting has been particularly important in
the program because the field of NMR
continues to be under rapid development.
Using scripts to implement new analysis
methods allows for the rapid progress
necessary to keep up with scientific
advances.

Despite it's popularity, it was clear that
there was room for improvement of
NMRView. One issue related to the effort to
build NMRView for multiple platforms.
NMRView was distributed as binary execu-
tables and so it was necessary to port and

compile the code on a variety of computers.
Every release required a large commitment
of time and access to the necessary com-
puter platforms.

Porting the code to multiple platforms
had one significant advantage: invariably, it
led to the discovery of bugs that existed, but
had not yet manifested themselves, on the
other operating systems. This was some-
what unsettling, however, in that it was un-
clear how many bugs remained to be found.
Aside from problems the occasional bugs
caused, time that could be spent on algo-
rithmic and scientific analysis was being de-
voted to preventing and fixing “trivial” pro-
gramming errors.

Finally, the code as originally written
in C was not readily amenable to the use of
newer developments in software engineer-
ing. There is an almost natural representa-
tion of the scientific concepts involved in
NMR in an object-oriented representation.
Taking advantage of this parallelism was not
readily possible within the C programming
language.

Furthermore, useful new third-party li-
braries were being developed in program-
ming languages other than C. These librar-
ies could not be readily incorporated into
NMRViewd.

Adopting the Java programming lan-
guage was seen as a possible means to
advance the state of the NMRView applica-
tion. Using Java would allow the develop-
ment of the code on only a single platform,
yet allow it to execute on more operating
systems than the C version of NMRView.
Most bugs in NMRViewC were related to
misuse of pointers and overrunning array
bounds. The fact that these errors are not
possible in Java means that more time and
effort can be spent on making NMRView
more valuable to end-users. Finally, adop-
tion of Java would allow the use of newer
techniques of software engineering and the
incorporation of newer third party libraries.

The use of Tcl/Tk was so important to
the success of NMRView as a useful tool for
scientists that a switch to Java could not be
considered without a means to continue with
these scripting tools. Using TclBlend, which
allows one to incorporate a Java virtual ma-

chine into the Tcl environment, was rejected,
as this option was inconsistent with the de-
sire to create a platform independent solu-
tion. Furthermore, the interface between the
C and Java portions of the code was both a
potential source of instability and created an
artificial barrier within the code.

The solution chosen was to implement
the entire application in Java, using Jacl to
execute Tcl scripts within the code. Jacl is
an implementation of the Tcl language that
is written entirely in Java [4]. While Jacl
could substitute for Tcl, there was no analo-
gous Java solution to replace Tk. After
some experimentation, | decided that devel-
opment of a Java implementation of Tk
would be feasible.

Two key factors allowed for the feasi-
bility of developing Swank (“Tk in Java”) in a
reasonable period of time [5]. Swing, the
Java user interface toolkit, provided a rich
variety of widgets with similar functionality to
Tk widgets [6]. Using the Swing widgets
meant that the behavior of Swank would not
be as similar to Tk as it would if the Swank
widgets were developed from lower level
Java components. On the other hand,
adopting Swing meant that a great deal of
coding work could be skipped. Furthermore,

Jacl introspection command:
java::info methods javax.swing.JButton

Command result:

{setForeground java.awt.Color}
{setHorizontalAlignment int}
{setHorizontalTextPosition int}
{setIcon javax.swing.Icon}
{setIconTextGap int}

{setLabel java.lang.String}
{setLocale java.util.Locale}
{setName java.lang.String}
{setPressedIcon javax.swing.Icon}
{setRequestFocusEnabled boolean}
{setRolloverEnabled boolean}
{setRolloverIcon javax.swing.Icon}

Java code generated:
} else if (argv[i].toString().equals(
"—icontextgap")) {

swkjbut-
ton.setIconTextGap(TclInteger.get(
interp, argv[i + 1]));

Figure 4: Jacl based introspection.

This Jacl code:
-selectMode
set vWidgets "JList"

if {[lsearch $vWidgets S$widget] >= 0} {
set specialGets [concat $specialGets {
{
}
H
}

ultimately results in this Java code:

} else if ..

setSelectionMode tkSelectMode SelectionMode —selectmode

} else if (argv[i].toString().equals("-selectmode")) {
swkjlist.setSelectionMode(SwankUtil.getTkSelectMode(interp, argv[i + 1]));

Fig 5: Jacl code to generate Tk specific configuration options

using the Swing widgets provides a richer
set of behaviors than the original Tk widgets.

The second key factor was the intro-
spection capabilities of the Jacl language.
Much of the code that forms the basis of
Swank is generated by Jacl scripts that de-
termine the fields and methods of each
Swing component and then automatically
produce Java code that provides a Tk-like
interface to the components (Fig. 4). This
generates a large number of configuration
options for each widget. Some of these map
coincidentally to the names and functions of
Tk configuration options. In other cases,
Jacl code is used to specifically generate
Java code for Tk options. In some of these
cases it is only necessary to generate code
that parses the appropriate Tk option and
maps it to an existing Java Swing method.
In other cases specific Java code is written
to enable the correct action in response to
the specified option (Fig 5). This Java code
is inserted in the generated Java file.

The result of using the “java::info
methods” command, as illustrated in Fig. 4,

is the method name and argument types
that each method requires. Integer, double,
and String arguments are processed with
standard Jacl APl commands. Other argu-
ments are processed by hand written Java
code specific to each argument type (Fig. 6.)

At present most Tk widgets are im-
plemented in Swank and have similar be-
havior and implement most of the Tk con-
figuration options. The above introspection
protocol also generates many additional
configuration options for each of the wid-
gets.

Perhaps the two most significant dif-
ferences with Tk are the lack of the option
database and the idiosyncratic behavior of
the scrollbars. The above protocol for gen-
erating the Java code that implements the
Swank widgets relies on using existing code
in the Swing widgets as much as possible.
This design did not lend itself to a paradigm
that facilitates the use of the option data-
base. Still, this is a significant deficiency in
Swank that should be rectified in future ver-
sions.

public static Locale getLocale(Interp interp, TclObject tclObject)

throws TclException {

TclObject[] argv = TclList.getElements(interp, tclObject);

if (argv.length == 2) {

return (new Locale(argv[0].toString(), argv[l].toString()));

} else if (argv.length == 3) {

return (new Locale(argv[0].toString(), argv[l].toString(),

argv[2].toString()));
} else {
return (Locale.US);
}
}

Figure 6. Java code to get a Java Locale object from the command arguments.

"®O06 _specAttr: .win_khg007.0: khg007.nv
IA0BRE &AL S AvIARAD®
file wview levels peak peakattr peakpick I
2D -:] live -:] 1] -:]le
x| 9.1231 73176 [iH 16
Y| 126.1855 | 108.7969 15N 2
z 2
A 31k

Figure 7. The NMRView spectrum con-
trol panel. Note the use of the Swank
“jtabbedpane” widget.

Again, reliance on Swing code has
made it difficult to get the correct Tk-like in-
teraction between scrollbars and scrollable
widgets. As an alternative, Swank imple-
ments a “jscrollpane” widget. This container
can appropriately manage scrollable wid-
gets. Horizontal and vertical scrollbars are
automatically displayed as needed.

With Jacl and Swank it was possible
to proceed with the development of
NMRViewd. Figure 7 illustrates one of the

primary control panels of NMRView. This
interface panel uses many of the widgets,
including the canvas. The Swank tabbed
pane allows the user to rapidly switch be-
tween different attribute groups. Figure 8
shows another NMRViewd interface panel
that provides a graphical interface to non-
linear regression curve fitting routines.

The resulting application met most all
the desired goals. It is cross platform: the
same Java byte-code files run on Mac OS X,
Windows, Linux and various varieties of
Unix. It is robust: typical errors of
NMRViewC do not occur, and when errors
do occur they do not generally crash the
program. Instead of a core dump, errors
generally result in throwing a Java excep-
tion, manifested by an error message in the
console.

NMRViewd is a multi-threaded appli-
cation: computationally intense processes
run in separate threads, and take advantage
of multiple processors if they are available.
While this would have been possible to do in

8eoe

Close | Peak: 31

setup fitpar fitdata data profile

Prefix for matrix numbers: t1fy
Suffix for matrix names: .nv A

Peak intensity mode: _jitter =

Peaklist: tlfv Select...

Relaxation type T1 v

Extension for save frame: test

z Auto fit

z Auto scale graph

" | Save to comment field
" Save to STAR save frame

Load Time File Reset

W& Fit | Fit All

Int.

Rate Analysis

Graph = Spectra
File
rate_y rate_y fit Params...
| 1 | 1 1 :
Display
3.00 —| AutoScale

2,00 —

1.00 — —

0.00 — —

a 200
Delay (ms.)

Figure 9. NMRView interface for determining the relaxation rate of NMR signals.

vecmat resize vec1 2048
vread $fileHandle 1 vec1
vecmat sb vec1 -offset 0.5
#
vecmat zf vec1 1
vecmat ft vec1
vecmat real vec1

Figure 10. Data processing script.

Create vector object named “vec1”

Read the first vector in file into the vector “vec1”

Multiply vector by a cosine shaped window

(sine shifted by 0.5%x)

Zero-fill vector (extend with zeros to 1x the length)
Fourier transform vector

Discard the imaginary portion of the complex vector

NMRViewC, the Java Threading APl made it
relatively straightforward to implement multi-
threading in a cross-platform manner.

The use of Jacl and Swank in
NMRViewdJ has meant that it is largely
backwards compatible with NMRViewC:
most Tcl scripts are the same in the two ver-
sions. On the other hand, as development
continues on new versions of NMRViewd
new features of Swank are being used to
improve the user interface. Widgets such as
the jtabbedpane, jtable, and jtree are being
used to add more capabilities to the
NMRViewJ GUIL. A “print” command that
calls methods of the Java Print API allows
the user to print any of the widgets.

A significant design goal was to be
able to take advantage of third party, open-
source packages to be able to rapidly ex-
tend the feature set of NMRViewd. Java
and Jacl provide many advantages in this
respect. The cross-platform nature of Java
allows libraries to be incorporated without
compilation on each platform. The Jacl in-
trospection capability makes it possible to
incorporate some libraries without writing
any Java code.

A particular open source library that
has been very useful is Colt, a high per-
formance Java library for scientific and tech-
nical computing [7]. Colt provides storage

and mathematical algorithms for one, two
and three dimensional matrices. The algo-
rithms provided with Colt were supple-
mented with those necessary for NMR data
processing and these were exposed at the
scripting level with the “vecmat” command.

The processing necessary to import
and then transform the data illustrated in
Fig. 2A to that in Fig. 2B was implemented
with the following script shown in Figure 10.

A distinct advantage of working in the
Jacl environment is that Java libraries such
as Colt can be used without writing a single
line of Java code. This is true even for li-
braries (like Colt) that were not explicitly
written to have scripting interfaces. Jacl’s
“‘java::new” command can be used to create
a new Java object that corresponds to the
Java class used as an argument to the
command. The java::new command returns
a handle to the underlying Java object. The
handle can then be used to invoke the vari-
ous public methods of the class.

Interacting with the Colt library using
the Jacl introspection capability is illustrated
in Fig. 11. In this example a 1D matrix (a
vector) is created and the elements set to a
value. This same protocol can be used to
instantiate an object of any of the library’s
classes that have a public constructor.
Similarly, the handle to the object can be

java0x184
% set n [$dm1dA size]
32

%$dm1dA zSum
3.2
%

% for {set | 0} {$| < $n} {incr I} {$dm1dA set $1 0.1}

% set dm1dA [java::new {cern.colt.matrix.impl.DenseDoubleMatrix1D int} 32]

Figure 11. Using the Colt library through Jacl’s introspection capability.

used to invoke any of the objects public
methods.

A significant concern in developing
NMRViewd was whether there would be a
significant drop in performance in switching
from C to Java. So far this has not been a
problem. Computationally intense proc-
esses written in Java have high perform-
ance: the Java code often runs nearly as
fast or even faster than the C code. Little
work has been done with NMRViewd to op-
timize the code for performance. | expect
that when careful code profiling and optimi-
zation is applied to code areas that are
slower that performance of the Java code
will be brought close to that of the C code.

The primary remaining issue is the
poor performance of some computational
routines written in Tcl scripts. A simple
benchmark is illustrated in Fig. 12, and
shows that Jacl code might run 25 times
slower than Tcl code. This poor perform-
ance presumably is a consequence of the
lack of the Tcl byte-code compiler in Jacl.
The Jacl interpreter does not even cache the
results of parsing procedures.

Despite the poor performance of Jacl
code, which could be overcome with further
development of Jacl, the experience of
porting NMRView from C to Java has con-
vinced the author that there are compelling
reasons for using Java, Jacl and Swank to
develop a wide variety of applications.

[1]1 B. A. Johnson and R. A. Blevins,
NMRView: a Computer Program for the
Visualization and Analysis of NMR Data, J.
Biomol. NMR 4,603-614. 1994

[2] B. A. Johnson, Using NMRView to Visu-
alize and Analyze the NMR Spectra of Mac-
romolecules, in Protein NMR Techniques,
2" Edition pp. 313-352, Human Press,
2004.

[3] J. Cavanagh, W. J. Fairbrother, N. J.
Skelton, and A. G. Palmer, Protein NMR
Spectroscopy: Principles and Practice, Aca-
demic Press, 1995.

proc bench {} {
set x 0.0
for {set i 0} {$i < 5000} {incr i} {
set x [expr {$i*3.0+$x}]
}

return $x

}

tclsh ~20000 microseconds/iteration
jaclsh ~500000 microseconds/iteration

jaclsh ~25x times slower

Figure 12. Simple Tcl script benchmark.

[4]
http://tcljava.sourceforge.net/docs/website/in
dex.html

[3]
http://www.onemoonscientific.com/swank/in
dex.html

[6] J. Elliott, R. Eckstein, M. Loy, D. Wood,
B. Cole, Java Swing 2" Edition, O'Reilly,
2002.

[71 W. Hoschek, Colt: Open Source Libraries
for High Performance Scientific and Techni-
cal Computing in Java.
http://dsd.Ibl.gov/~hoschek/colt

